The Latent Bernoulli-Gauss Model for Data Analysis
نویسندگان
چکیده
We present a new latent-variable model employing a Gaussian mixture integrated with a feature selection procedure (the Bernoulli part of the model) which together form a ”Latent Bernoulli-Gauss” distribution. The model is applied to MAP estimation, clustering, feature selection and collaborative filtering and fares favorably with the state-of-theart latent-variable models.
منابع مشابه
Beta - Binomial and Ordinal Joint Model with Random Effects for Analyzing Mixed Longitudinal Responses
The analysis of discrete mixed responses is an important statistical issue in various sciences. Ordinal and overdispersed binomial variables are discrete. Overdispersed binomial data are a sum of correlated Bernoulli experiments with equal success probabilities. In this paper, a joint model with random effects is proposed for analyzing mixed overdispersed binomial and ordinal longitudinal respo...
متن کاملThe Analysis of Bayesian Probit Regression of Binary and Polychotomous Response Data
The goal of this study is to introduce a statistical method regarding the analysis of specific latent data for regression analysis of the discrete data and to build a relation between a probit regression model (related to the discrete response) and normal linear regression model (related to the latent data of continuous response). This method provides precise inferences on binary and multinomia...
متن کاملltm: An R Package for Latent Variable Modeling and Item Response Theory Analyses
The R package ltm has been developed for the analysis of multivariate dichotomous and polytomous data using latent variable models, under the Item Response Theory approach. For dichotomous data the Rasch, the Two-Parameter Logistic, and Birnbaum’s Three-Parameter models have been implemented, whereas for polytomous data Semejima’s Graded Response model is available. Parameter estimates are obta...
متن کاملFactor analysis for Bernoulli variables and its application in the survey of the high school mathematics textbooks in Iran.
Nowadays factor analysis has been extended greatly, and one of its applications is to analysis the attributes which are not measurable directly. While the response variable has a Bernoulli distribution, using factor analysis method for continuous quantities leads to invalid and misleading results. Factor analysis for Bernoulli response variable base on Logit model is developed in this paper ...
متن کاملLatent Regression Analysis.
Finite mixture models have come to play a very prominent role in modelling data. The finite mixture model is predicated on the assumption that distinct latent groups exist in the population. The finite mixture model therefore is based on a categorical latent variable that distinguishes the different groups. Often in practice distinct sub-populations do not actually exist. For example, disease s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1007.0660 شماره
صفحات -
تاریخ انتشار 2010